By Long Luo
在数学、物理学、工程和计算机领域中,泰勒公式 是一种广泛使用的分析方法,用来计算函数的近似值 。在实践中,很多函数非常复杂,而且某些函数是不可积的,想求其某点的值,直接求无法实现。
泰勒公式可以将复杂的函数近似地表达为简单的多项式函数,用一个多项式函数 去逼近一个给定的函数(即尽量使多项式函数图像拟合给定的函数图像)。注意在逼近的时候一定是从函数图像上的某个点展开。
下图所示就是不同项数的泰勒公式对 \(\sin x\) 的逼近:图1. 泰勒公式对 \(\sin\) 的逼近
泰勒级数的定义为:
\[ f(x) = \sum _{n=0}^{\infty}{\frac{f^{(n)}(a)}{n!}}(x-a)^{n} = f(a) + {\frac {f'(a)}{1!}}(x - a) + {\frac {f''(a)}{2!}}(x - a)^{2} + {\frac {f'''(a)}{3!}}(x - a)^{3} + \cdots \]
这里,\(n!\) 表示 \(n\) 的阶乘,而 \(f^{(n)}(a)\) 表示函数 \(f\) 在点 \(a\) 处的 \(n\) 阶导数。如果 \(a = 0\) ,这个级数也被称为麦克劳林级数(Maclaurin series) 。
泰勒展开式有很多,那么如何记忆呢?首先我们需要明白,泰勒公式之间都是有相互关联的,我们可以通过推导来理解性记忆这些公式。泰勒公式的具体推导过程可以参考数学分析教材或者网络 。
下面我们就推导这些公式,以便更好的记忆 !
几何级数 Geometric series 对于 \(-1 < x < 1\) 的情况,几何级数 由等比数列求和公式可得:
\[ \frac{1}{1 - x} = \sum _{n=0}^{\infty}x^{n} = 1 + x + x^{2} + \cdots + x^{n} \]
用 \(-x\) 代入 \(x\) 上式,则:
\[ \frac{1}{1 + x} = \sum _{n=0}^{\infty}(-1)^nx^{n} = 1 - x + x^{2} - x^3 + \cdots + (-1)^n x^{n} \]
用 \(x^2\) 替代 \(x\) , 由于 \(\arctan x = \int_{0}^{x} \frac{1}{1 + x^2} \mathrm{d}x\) ,对于 \(-1 \le x \le 1, x \neq \pm i\) ,
\[ \arctan x = \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n + 1}}x^{2n + 1} = x - {\frac {x^3}{3}} + {\frac {x^5}{5}} - \cdots + \frac{(-1)^n}{2n + 1}x^{2n + 1} \]
因为 \(\frac{1}{(1 - x)^2} = (\frac{1}{1 - x})'\) ,则:
\[ \begin{aligned} \frac {1}{(1-x)^2} &= \sum _{n=1}^{\infty }n x^{n-1} \\ &= 1 + 2x + 3x^2 + \cdots + n x^{n-1} \end{aligned} \]
同 \(\frac{1}{(1 - x)^3} = \frac{1}{2} (\frac{1}{(1 - x)^2})'\) ,则有:
\[ \frac {1}{(1 - x)^3} = \sum _{n=2}^{\infty }{\frac {n(n - 1)}{2}}x^{n - 2} \]
指数函数 Exponent function 由于 \(\frac{\mathrm{d} e^x}{\mathrm{d} x} = e^x\) ,\(e^0 = 1\) 那么:
\[ e^x = \sum _{n=0}^{\infty }{\frac{x^n}{n!}} = 1 + x + {\frac{x^2}{2!}} + {\frac {x^3}{3!}} + \cdots + {\frac{x^n}{n!}} \]
很明显:
\[ \begin{aligned} (e^x)' &= (\frac{1}{0!}+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots)' \\ e^x &= 0+1+\frac{x}{1}+\frac{x^2}{2!}+\frac{x^3}{3!}\cdots \\ &= 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots \end{aligned} \]
对于普通指数函数 \(a^x\) , 由于 \(a^x=e^{x\ln a}\) ,如果将 \(x\) 换为 \(x\ln a\) ,那么 \(a^x\) 的泰勒展开式:
\[ \begin{aligned} a^x &= e^{x \ln a} \\ &= 1 + x \ln a + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \cdots + \frac{(x \ln a)^n}{n!} \\ \end{aligned} \]