/** * Returns the trigonometric sine of an angle. Special cases: * <ul><li>If the argument is NaN or an infinity, then the * result is NaN. * <li>If the argument is zero, then the result is a zero with the * same sign as the argument.</ul> * * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * * @param a an angle, in radians. * @return the sine of the argument. */ @HotSpotIntrinsicCandidate publicstaticdoublesin(double a) { return StrictMath.sin(a); // default impl. delegates to StrictMath }
1 2 3 4 5 6 7 8 9 10 11
/** * Returns the trigonometric sine of an angle. Special cases: * <ul><li>If the argument is NaN or an infinity, then the * result is NaN. * <li>If the argument is zero, then the result is a zero with the * same sign as the argument.</ul> * * @param a an angle, in radians. * @return the sine of the argument. */ publicstaticnativedoublesin(double a);
/* @(#)k_sin.c 1.3 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */
/* __kernel_sin( x, y, iy) * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). * * Algorithm * 1. Since sin(-x) = -sin(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. * 3. sin(x) is approximated by a polynomial of degree 13 on * [0,pi/4] * 3 13 * sin(x) ~ x + S1*x + ... + S6*x * where * * |sin(x) 2 4 6 8 10 12 | -58 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 * | x | * * 4. sin(x+y) = sin(x) + sin'(x')*y * ~ sin(x) + (1-x*x/2)*y * For better accuracy, let * 3 2 2 2 2 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) * then 3 2 * sin(x) = x + (S1*x + (x *(r-y/2)+y)) */
#ifndef __FDLIBM_H__ #include"fdlibm.h" #endif
double __kernel_sin(double x, double y, int iy) { double z, r, v; int32_t ix;
GET_HIGH_WORD(ix, x); ix &= IC(0x7fffffff); /* high word of x */ if (ix < IC(0x3e400000)) /* |x| < 2**-27 */ { if ((int32_t) x == 0) return x; /* generate inexact */ } z = x * x; v = z * x; r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6))); if (iy == 0) return x + v * (S1 + z * r); else return x - ((z * (half * y - v * r) - y) - v * S1); }