[Leetcode][240. Search a 2D Matrix II] 5 Approaches: BF, Binary Search(Row), Binary Search(Diagonal, Row, Col), Binary Search(Global), 2D Coord Axis
By Long Luo
This article is the solution 5 Approaches: Brute Force, Binary Search(Row), Binary Search(Diagonal, Row, Col), Binary Search(Global), 2D Coord Axis of Problem 240. Search a 2D Matrix II.
Here shows 5 Approaches to slove this problem: Brute Force, Binary Search(Row), Binary Search(Diagonal, Row, Col), Binary Search(Global), 2D Coord Axis.
Intuition
This problem is like 74. Search a 2D Matrix, we can refer to the solution 6 Approaches: Brute Force, Row Search, Column Search, One Binary Search, 2D Coordinate Axis .
Brute Force
Just scan the \(\textit{matrix}\) to find the answer.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26public static boolean searchMatrix_bf(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int col = matrix[0].length;
if (matrix[0][0] > target || matrix[row - 1][col - 1] < target) {
return false;
}
for (int i = 0; i < row; i++) {
if (matrix[i][col - 1] < target) {
continue;
}
for (int j = 0; j < col; j++) {
if (matrix[i][j] == target) {
return true;
}
}
}
return false;
}
Analysis
- Time Complexity: \(O(mn)\).
- Space Complexity: \(O(1)\).
Binary Search(Row)
Use Binary Search method in each Row to find the answer.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41public boolean searchMatrix_bs_row(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int col = matrix[0].length;
if (matrix[0][0] > target || matrix[row - 1][col - 1] < target) {
return false;
}
for (int i = 0; i < row; i++) {
if (matrix[i][col - 1] < target) {
continue;
}
if (binarySearchRow(matrix[i], target)) {
return true;
}
}
return false;
}
public boolean binarySearchRow(int[] arr, int target) {
int low = 0;
int high = arr.length - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (arr[mid] == target) {
return true;
} else if (arr[mid] > target) {
high = mid - 1;
} else if (arr[mid] < target) {
low = mid + 1;
}
}
return false;
}
Analysis
- Time Complexity: \(O(min(M,N)(\log M + \log N))\).
- Space Complexity: \(O(1)\).
Binary Search(Diagonal, Row, Col)
This method is more difficult, we have to Binary Search method in each Diagonal, then each Row and each Column to find the answer.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77public static boolean searchMatrix_bs_3d(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int col = matrix[0].length;
if (matrix[0][0] > target || matrix[row - 1][col - 1] < target) {
return false;
}
int index = diagonalBinarySearch(matrix, target);
if (matrix[index][index] == target) {
return true;
}
for (int i = 0; i <= index; i++) {
boolean rowResult = rowBinarySearch(matrix, i, col - 1, target);
boolean colResult = colBinarySearch(matrix, i, row - 1, target);
if (rowResult || colResult) {
return true;
}
}
return false;
}
public static int diagonalBinarySearch(int[][] matrix, int target) {
int minVal = Math.min(matrix.length, matrix[0].length);
int left = 0;
int right = minVal;
while (left < right) {
int mid = left + (right - left) / 2;
if (matrix[mid][mid] < target) {
left = mid + 1;
} else {
right = mid;
}
}
return Math.min(left, minVal - 1);
}
public static boolean rowBinarySearch(int[][] matrix, int start, int end, int target) {
int left = start;
int right = end;
while (left <= right) {
int mid = left + (right - left) / 2;
if (matrix[start][mid] == target) {
return true;
} else if (matrix[start][mid] > target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return false;
}
public static boolean colBinarySearch(int[][] matrix, int start, int end, int target) {
int left = start + 1;
int right = end;
while (left <= right) {
int mid = left + (right - left) / 2;
if (matrix[mid][start] == target) {
return true;
} else if (matrix[mid][start] > target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return false;
}
Analysis
- Time Complexity: \(O(min(M,N)(\log M + \log N))\) .
- Space Complexity: \(O(1)\) .
Binary Search(Global)
Consider the \(\textit{matrix}\) as a \(1-D\) array, and the Binary Search the array.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45public static boolean searchMatrix_bs(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length;
int col = matrix[0].length;
if (matrix[0][0] > target || matrix[row - 1][col - 1] < target) {
return false;
}
return searchMatrixHelper(matrix, 0, 0, col - 1, row - 1, col - 1, row - 1, target);
}
private static boolean searchMatrixHelper(int[][] matrix, int x1, int y1, int x2, int y2, int xMax, int yMax, int target) {
if (x1 > xMax || y1 > yMax) {
return false;
}
if (x1 == x2 && y1 == y2) {
return matrix[y1][x1] == target;
}
int m1 = (x1 + x2) >>> 1;
int m2 = (y1 + y2) >>> 1;
if (matrix[m2][m1] == target) {
return true;
}
if (matrix[m2][m1] < target) {
// Right Up
return searchMatrixHelper(matrix, m1 + 1, y1, x2, m2, x2, y2, target) ||
// Left Down
searchMatrixHelper(matrix, x1, m2 + 1, m1, y2, x2, y2, target) ||
// Right Down
searchMatrixHelper(matrix, m1 + 1, m2 + 1, x2, y2, x2, y2, target);
} else {
// Right Up
return searchMatrixHelper(matrix, m1 + 1, y1, x2, m2, x2, y2, target) ||
// Left Down
searchMatrixHelper(matrix, x1, m2 + 1, m1, y2, x2, y2, target) ||
// Left Up
searchMatrixHelper(matrix, x1, y1, m1, m2, x2, y2, target);
}
}
Analysis
- Time Complexity: \(O(m \log n)\) .
- Space Complexity: \(O(1)\) .
2D Coord Axis
The \(2D\) array increases from left to right and from top to bottom.
- Each column, all the numbers above are all smaller than it.
- Each row, the right of the number are all larger than it.
Therefore, the algorithm is as follows:
- From the bottom left corner of the \(2D\) array as the origin, take it as a \(2D\) coordinate axis;
- If the current number is larger than the \(\textit{target}\), moves up;
- If the current number is less than the \(\textit{target}\), move right.
1 | public static boolean searchMatrix_coord_left(int[][] matrix, int target) { |
Analysis
- Time Complexity: \(O(m + n)\).
- Space Complexity: \(O(1)\).
All suggestions are welcome. If you have any query or suggestion please comment below. Please upvote👍 if you like💗 it. Thank you:-)
Explore More Leetcode Solutions. 😉😃💗